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The nonlinear instability of thread--annular flow
at high Reynolds number
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The surgical technique of thread injection of medical implants is modelled by the
axial pressure-gradient-driven flow between concentric cylinders with a moving core.
The nonlinear stability of the basic flow is analysed theoretically at asymptotically
large Reynolds number and it is found that non-axisymmetric finite-amplitude neutral
modes can be supported over a wide range of thread radii and injection velocities.
The axial force on the thread is calculated and it is found to be significantly less
than that predicted by undisturbed-flow theory, in agreement with thread–annular
experiments.

1. Introduction
Thread injection is a newly devised surgical technique which enables porous medical

implants to be placed inside the body in a minimally invasive way, thus reducing
surgical trauma. The thread is stored on a spool and injected within a fluid by
applying an axial pressure gradient to the cylindrical container holding the liquid and
the thread (figure 1). The thread velocity V ∗ is controlled by a motor. It is clearly
desirable for the thread to be injected smoothly and to not suffer lateral deviation:
it is therefore important that the flow is kept laminar. For this reason the transition
to turbulence of the basic thread–annular flow and its dependence upon Reynolds
number, thread radius and injection velocity are of great practical interest.

In a recent experimental paper Frei, Lüscher & Wintermantel (2000, hereinafter
referred to as FLW) modelled the thread injection process by using a cylindrical rubber
filament to represent the thread. The filament was allowed to move concentrically
through a steel cylindrical pipe (representing the injection vessel) filled with water.
They measured various quantities including the axial force on the thread due to
pressure gradient and viscous effects. On comparing the results with the theoretical
predictions that arise from the exact Navier–Stokes solution for axial flow between
concentric cylinders they discovered that the force measured in the experiments was
always significantly less than that predicted by their theory. This observation forms
the motivation for the current study in which we investigate whether this discrepancy
could be caused by a nonlinear instability of the basic thread–annular flow.

There have been many theoretical studies of the stability of so-called core–annular
flows in which two fluids with different properties occupy a single pipe (e.g. the
temporal studies of Preziosi, Chen & Joseph 1989 and Huang & Joseph 1995 and
the spatio-temporal approach of Shen & Li 1996 and Chen & Lin 2002). In recent
years there has been less attention focused on the case where the inner cylinder is
a solid body rather than a fluid. The exact solution of the Navier–Stokes equations
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Figure 1. The thread injection process: fluid is forced out of the container and along the pipe;
simultaneously, the thread is injected using a motor attached to the spool. The thread forms a
porous tangle in the desired location within the body.

that arises in this case (to be derived in § 1.1) was studied by Shigechi & Lee
(1991) and is also used by FLW, but although the linear stability of this flow has
been discussed extensively by Mott & Joseph (1968) and Sadeghi & Higgins (1991)
the critical Reynolds number predictions from these studies are much higher than
those observed experimentally. It would therefore appear that nonlinear effects are
particularly important at an early stage in the transition process for this flow.

The stability approach adopted in this paper is to study the thread–annular flow
at high Reynolds number and seek a nonlinear neutral wave instability structure
in which the critical layer (where the disturbance phase speed matches that of the
basic flow) is sited away from the annulus walls and is of the nonlinear inviscid type
first studied by Benney & Bergeron (1969). We find that the nonlinear disturbances
have a particularly strong effect on the mean flow. The stability structure found here
is similar to that derived by Smith & Bodonyi (1982) for flow through a circular
pipe, but there are a number of crucial differences which will be highlighted in § 2.
Before moving on to discuss the instability in more detail we introduce the governing
non-dimensional equations and derive the basic thread–annular flow.

1.1. The governing equations and basic flow

The cylindrical polar coordinate system (x∗, r∗, θ) = (a∗x, a∗r, θ) is used throughout
this paper, where x, r and θ represent the non-dimensional axial, radial and azimuthal
coordinates respectively and the tube is of dimensional radius a∗. The velocity com-
ponents are written as (u∗, v∗, w∗) = (g∗a∗2/ρ∗ν∗)(u, v, w), where −4g∗ is the constant
axial pressure gradient to be applied to the pipe. Here ρ∗ and ν∗ are the density
and kinematic viscosity of the incompressible fluid. We express the pressure p∗ as
(g∗2a∗4/ρ∗ν∗2)p, and the time is written in the form (ρ∗ν∗/g∗a∗)t. These scalings enable
us to write the governing three-dimensional, unsteady Navier–Stokes equations in the
non-dimensional form:
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Figure 2. The simplified model geometry for which the Navier–Stokes equations have as a
solution the basic thread–annular flow derived in § 1.
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where the Reynolds number R is defined by

R =
g∗a∗3

ρ∗ν∗2
. (1.2)

We wish to model the thread injection process by considering the axial flow be-
tween concentric cylinders r = 1 (representing the tube) and r = δ (representing
a thread of dimensional radius δ∗ = a∗δ). The thread is moving in the axial di-
rection with non-dimensional velocity V (corresponding to the dimensional velocity
V ∗ = (g∗a∗2/ρ∗ν∗)V = (ν∗/a∗)RV , from (1.2)). Figure 2 shows the geometrical config-
uration under consideration. The basic flow is expected to be steady and parallel so
we seek a solution of the Navier–Stokes equations (1.1) in which

u = U0(r), v = w = 0,

subject to the fixed axial pressure gradient ∂p∗/∂x∗ = −4g∗, which in non-dimensional
terms can be written

∂p

∂x
= − 4

R
.

From substitution into (1.1) the governing equation for U0 is

U ′′0 +
1

r
U ′0 = −4,

subject to the viscous no-slip conditions

U0(δ) = V , U0(1) = 0.

The solution is easily found to be

U0 = 1− r2 +
(V − 1 + δ2)

ln δ
ln r, δ 6 r 6 1. (1.3)

Clearly this basic flow depends on two parameters: the thread radius δ, which must
lie in the range 0 < δ < 1, and the thread injection velocity V . There is a theoretical
maximum thread velocity at which the negative viscous shear force on the thread is
balanced by that due to the pressure gradient. It will be shown in § 5 that this is given
by

Vmax = 1− δ2. (1.4)

In figure 3 we plot the basic flow for various values of δ and V within their allowable
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Figure 3. The basic thread–annular flow U0(r) for various values of thread radius δ and injection
velocity V . (a) δ = 0.2; (b) δ = 0.4; (c) δ = 0.6; (d ) δ = 0.8. In each case six equally spaced values
of V are shown, ranging from (left to right) V = 0 to V = Vmax = 1− δ2.

range. Since the pressure gradient rather than the mass flux is kept fixed we see that
the mean velocity decreases as the thread radius is increased.

As remarked earlier there is a notable discrepancy between the results of thread-
injection experiments and theory assuming the basic profile U0. For example, Koch
& Feind (1958) report that the experimental transitional Reynolds number Rc for
thread–annular flow with a stationary thread lies in the range 3000–4000. On the other
hand, linear theory (Sadeghi & Higgins 1991) only agrees well with experiment in
the small-gap limit and generally predicts much higher values of Rc, with Rc →∞ as
δ → 0 for all values of V . In this paper we will attempt to show that a possible reason
for this discrepancy is that the basic flow is susceptible to a nonlinear instability which
induces a distortion to the mean flow. To this end, in the next section we investigate the
stability of the basic thread–annular flow to nonlinear non-axisymmetric disturbances
using asymptotic methods based on a large-Reynolds-number assumption.

2. The nonlinear instability structure
In this section we will show that the basic thread–annular flow derived in § 1.1

supports a nonlinear neutral wave structure of a similar type to that found by Smith
& Bodonyi (1982) for fully developed flow through a single pipe (Hagen–Poiseuille
flow or HPF) and that found by Walton (2002) for impulsively started pipe flow.
The neutral wave structure essentially consists of four main regions: a region where
to leading order the instability is governed by inviscid dynamics; two viscous wall
layers on the inner surface of the tube and the surface of the thread, and finally,
and most significantly, an inviscid nonlinear equilibrium critical layer where the basic
flow velocity is equal to the phase speed of the disturbance. The phase shifts induced
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Figure 4. The asymptotic structure of the nonlinear neutral modes for thread–annular flow.

across the two wall layers must be balanced by that induced across the critical layer
and this requirement leads to the determination of the amplitude of the disturbance
in terms of its azimuthal and axial wavenumbers and the properties of the basic flow.
A sketch of the neutral wave structure is given in figure 4. We start by considering the
inviscid part of the flow field before embarking upon the more complicated critical
layer analysis.

2.1. The inviscid region

This region occupies the majority of the pipe where the radial variable r is O(1). The
scalings follow those set out in Smith & Bodonyi (1982, hereinafter referred to as SB)
and the appropriate expansions are:

u = U0(r) + R−1/6u1M(r) + R−1/3(u2(r, θ, x) + u2M(r))

+ · · ·+ R−5/6u5(r, θ, x) + · · · , (2.1a)

v = R−1/3v2(r, θ, x) + · · ·+ R−5/6v5(r, θ, x) + · · · , (2.1b)

w = R−1/6w1M(r) + R−1/3(w2(r, θ, x) + w2M(r)) + · · ·+ R−5/6w5(r, θ, x) + · · · , (2.1c)

p = R−1/3(p2(r, θ, x) + p2M(r)) + · · ·+ R−5/6p5(r, θ, x) + · · · , (2.1d)

with R � 1. The subscript M refers to a mean flow distortion which is the subject
of a detailed discussion in § 4, but it is worth noting at this stage that the induced
streamwise and azimuthal mean-flow distortions are larger than the fundamental
disturbance, which has the subscript 2. The appearance of the terms with subscript 5
anticipate the occurrence of the induced O(R−1/2) phase shift to be discussed in more
detail in § 2.2. The fundamental disturbances (u2, v2, w2, p2) take the form of the real
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parts of

A0(F2(r), iG2(r), H2(r), P2(r)) exp(iξ), ξ = α(x− ct) +Nθ, (2.2)

respectively, where α and c are taken to be real and N is an integer. The main aim
of the analysis presented in this section is to determine the real amplitude A0 of the
neutral modes and demonstrate its dependence upon the wavenumbers α and N and
the basic flow parameters δ and V . In the process the phase shift across the critical
layer will be calculated. The wave speed c of the neutral mode is assumed to be O(1)
(the precise value will be determined as part of the analysis) and we write c = c0 to
leading order.

We substitute the expansions (2.1), (2.2) into the governing equations (1.1) and
obtain the leading-order inviscid balances:

αF2 + G′2 +
G2

r
+
NH2

r
= 0, (U0 − c0)αF2 + G2U

′
0 = −αP2, (2.3a, b)

(U0 − c0)αG2 = P ′2, (U0 − c0)αH2 = −NP2

r
. (2.3c, d )

The velocity components F2, G2, H2 can be eliminated, leaving the pressure perturba-
tion governed by Rayleigh’s equation:
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(
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1

r
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)
= 2U ′0P
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The appropriate boundary conditions express the inviscid requirement of tangential
flow on the boundaries, namely

P ′2 = 0 on r = δ, P ′2 = 0 on r = 1. (2.5)

As expected it is clear from (2.3) that the velocity components are singular at the
radial location where U0 = c0 and a critical layer is required at this location to smooth
out the singularity. We define rc such that

U0 = c0 when r = rc,

and note that for thread–annular flow the critical layer position rc depends on the
values of δ and V .

In what follows we assume that the thread injection velocity V is larger than the
(as yet unknown) disturbance wave speed c0. If this is not the case, and V < c0,
then there will be two values of rc and hence two critical layers to analyse. We will
see in § 3 that the condition V > c0 leads to the determination of a critical thread
radius below which no instability of the single-critical-layer type is possible. In view
of these remarks it is clear that there is a fundamental difference between the stability
properties of thread–annular flow with a moving (V 6= 0) and non-moving (V = 0)
thread. It is only the former case that we consider here. The observation here that the
stability properties of thread–annular flow depend crucially on whether the thread is
moving is consistent with the experiments of FLW where they found major differences
between the results for V = 0 and V 6= 0. We will discuss these experiments in more
detail in § 5.

It is convenient at this point to define the skin-friction and curvature coefficients
τ0 = −rcU ′0(rc), τ1 = 1

2
r2
cU
′′
0 (rc). For thread–annular flow these have the explicit form

τ0 = 2r2
c − V − 1 + δ2

ln δ
, τ1 = −r2

c − V − 1 + δ2

2 ln δ
,
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from (1.3). In order to match with the critical layer we need to derive the asymptotic
behaviour of the disturbance velocity components and pressure as the critical layer
is approached. It is straightforward to show from (2.3) and (2.4) that as r → rc−

F2 ∼ p̂
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where the small parameter ε is defined by ε = (rc− r)/rc, and p̂ = P2(rc). As in SB and
Walton (2002) the quantity j3 is unknown but can be found numerically by solving
the Rayleigh equation (2.4) subject to the boundary conditions (2.5). Finally, there is
a jump condition across the critical layer arising from the O(R−1/2) phase shift which
we determine precisely in the next section. The implication of this is that terms of the
form

Re(ln(rc − r) exp(iξ)) for r < rc

are replaced by

Re((ln(r − rc) + iR−1/2Φ) exp(iξ)) for r > rc, (2.7)

where the O(1) quantity Φ is to be determined as part of the analysis. This means
that quantities such as ln(rc− r) cos ξ are replaced by ln(r− rc) cos ξ−R−1/2Φ sin ξ as
we cross the critical layer. We therefore see by comparison with the expansions (2.1)
that (u5, v5, w5, p5) will be the lowest-order terms to undergo a non-zero phase shift.
As far as the solution of the Rayleigh equation (2.4) is concerned, the appropriate
jump condition is simply that P2 remains real as the critical layer is crossed. As in
previous works, the solution of (2.4) subject to the boundary conditions (2.5) and
the jump condition will determine the value of the wave speed c0 for given values of
N, α, δ and V . The Rayleigh equation is solved numerically in § 3. Next we investigate
the dynamics of the critical layer with the ultimate aim of determining the scaled
phase shift Φ analytically in terms of the disturbance amplitude A0.
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2.2. The inviscid nonlinear critical layer

The analysis in this section follows closely the work of SB and Walton (2002) and we
adopt a similar notation to theirs wherever possible. Rather than presenting all the
details here we just present the key results.

First, we can obtain the thickness of the critical layer using the following argument.
As the critical layer is approached from the inviscid region we can see that the
fundamental azimuthal disturbance ∼R−1/3ε−1, while the pressure ∼R−1/3. In the
critical layer nonlinear and pressure forces dominate with viscosity a higher-order
effect and so we have the balance p ∼ w2 from the azimuthal momentum equation
(1.1d). Thus we have ε ∼ R−1/6 in the critical layer and we write

r = rc + R−1/6Y , with Y = O(1).

The velocities and pressure expand as follows:

u = c0 + R−1/6U1(Y , ξ) + (R−1/3 lnR−1/6)U3/2(Y , ξ) + R−1/3U2(Y , ξ)

+ · · ·+ R−5/6U5(Y , ξ) + · · · , (2.8a)

v = R−1/3V1(Y , ξ) + (R−1/2 lnR−1/6)V3/2(Y , ξ) + R−1/2V2(Y , ξ)

+ · · ·+ R−1V5(Y , ξ) + · · · , (2.8b)

w = R−1/6W1(Y , ξ) + (R−1/3 lnR−1/6)W3/2(Y , ξ) + R−1/3W2(Y , ξ)

+ · · ·+ R−5/6W5(Y , ξ) + · · · , (2.8c)

p = R−1/3P1(Y , ξ) + (R−1/2 lnR−1/6)P3/2(Y , ξ) + R−1/2P2(Y , ξ)

+ · · ·+ R−1P5(Y , ξ) + · · · . (2.8d)

Substitution of these expansions into the Navier–Stokes equations (1.1) yields the
following leading-order nonlinear balances:

αU1ξ + V1Y +
NW1ξ

rc
= 0, (2.9a)

αU1U1ξ + V1U1Y +
NW1U1ξ

rc
= −αP1, P1Y = 0, (2.9b, c)

αU1W1ξ + V1W1Y +
NW1W1ξ

rc
= −NP1ξ

rc
, (2.9d )

from which we deduce that the main pressure disturbance is constant throughout the
layer and assumes the value

P1 = A0p̂ cos ξ + p2M(rc),

from (2.1), (2.2) and (2.6). In order to match to the inviscid region the appropriate
asymptotic behaviour of the velocity components is

U1 ∼ −τ0

rc
Y + u1M(rc±)− A0p̂N

2

α2rcτ0Y
cos ξ, (2.10a)

V1 ∼ − A0p̂

αrcτ0

(N2 + α2r2
c ) sin ξ, W1 ∼ A0p̂N

ατ0Y
cos ξ + w1M(rc±), (2.10b, c)
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as Y → ±∞, with the first term in (2.10a) arising from the basic flow. As in SB this
leading-order problem can be solved analytically. It has the form

U1 = − N

αrc
G(η), V1 = −µ sin ξ, W1 = −ατ0

N

(
Y − rcb

τ0

)
+ G(η), (2.11a–c)

with

µ =
A0p̂∆

αrcτ0

, b = u1M(rc±) +
N

αrc
w1M(rc±), ∆ = N2 + α2r2

c . (2.12)

The solution depends on the variable η, a function of Y and ξ given by

η =
ατ0

2rc

(
Y − rcb

τ0

)2

+ µ cos ξ.

At this order the function G(η) is arbitrary (it will be determined later in (2.25)), but
to match to the inviscid region we require the asymptotic behaviour

G(η) ∼ ± (2αrcτ0)
1/2N

∆
η1/2 + w1M(rc±) as η →∞, (2.13)

implied by (2.10) and (2.11). The ± signs refer to the upper/lower parts of the
critical layer where Y − rcb/τ0 > (2rcµ(1−cos ξ)/ατ0)

1/2, and Y − rcb/τ0 < −(2rcµ(1−
cos ξ)/ατ0)

1/2, respectively.
In order to determine the phase shift we need to examine the behaviour of higher-

order terms. It is convenient to define a skewed velocity

ūm = αUm +
N

rc
Wm (2.14)

for m = 1, 3/2, 2, . . . , so that the continuity equation becomes

ūmξ + VmY =F(1)
m . (2.15)

Following some manipulation of the governing equations we can obtain an equation
for the shear ūmY . This takes the form

∓
(

2ατ0

rc

)1/2

(η − µ cos ξ)1/2 ∂ūmY

∂ξ̂
=
∂F(2)

m

∂Y
− ∆

r2
c

∂F(3)
m

∂ξ
+
ατ0

rc
F(1)

m . (2.16)

The quantities F(n)
m (m = 1, 3/2, 2, . . . ; n = 1, 2, 3, 4) are forcing terms arising from the

Navier–Stokes equations which can be written down for any particular m and n, and

the transformation of (ξ, Y ) to characteristic variables (ξ̂, η) with ξ = ξ̂ has been
performed. A similar equation for Wm can be obtained and takes the form

∓
(

2ατ0

rc

)1/2

(η − µ cos ξ)1/2 ∂Wm

∂ξ̂
= µ sin ξG′(η)ūm

+Vm

(
ατ0N

∆
∓
(

2ατ0

rc

)1/2

(η − µ cos ξ)1/2G′(η)

)
+F(4)

m − N

rc
Pmξ. (2.17)

This equation enables Wm to be determined once the shear term ūmY is found from
(2.16). The corresponding equations to (2.16) and (2.17) in SB are their equations
(3.10a) and (3.10b).

In order to induce a phase shift across the critical layer we require the solution for
(ūm,Wm, Pm) to possess an odd part about ξ = π, with Vm even. As in SB the m = 3/2
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solution does not give a phase shift and need not be considered further. Next we
consider the m = 2 stage for which the forcing terms take the form

F(1)
2 = −V1

rc
+
NYW1ξ

r2
c

, (2.18a)

F(2)
2 =

αNYW1U1ξ

r2
c

+
N

rc

(
NYW1W1ξ

r2
c

− V1W1

rc
+
NY P1ξ

r2
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)
, (2.18b)

F(3)
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W 2
1

rc
, F(4)

2 =
NYW1W1ξ

r2
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− V1W1

rc
+
NY P1ξ

r2
c

. (2.18c, d )

Here the controlling equations are (2.16), (2.17) with m = 2, together with the asymp-
totic behaviour

U2 ∼ τ1

r2
c

Y 2 + Y u′1M(rc±) + u2M(rc±)

+
A0p̂

α2τ0r2
c

((
−N2

(
1− 2τ1

τ0

)
+ α2r2

c

(
1 +

2τ1

τ0

))
ln

∣∣∣∣Yrc
∣∣∣∣

−N
2

3

(
1− 2τ1

τ0

)
− 3j3 +

α2r2
c

3

(
1 +

5τ1

τ0

))
cos ξ, (2.19a)

V2 ∼ − A0p̂

ατ0rc

((
N2

(
1− 2τ1

τ0

)
− α2r2

c

(
1 +

2τ1

τ0

))
Y

rc
ln

∣∣∣∣Yrc
∣∣∣∣

+

(
1

3
N2

(
1 +

τ1

τ0

)
+ 3j3 − α2r2

c

3

(
1− τ1

τ0

))
Y

rc

)
sin ξ, (2.19b)

W2 ∼ Yw′1M(rc±)− NA0p̂

αrcτ0

(
1− τ1

τ0

)
cos ξ + w2M(rc±), (2.19c)

as Y → ±∞, implied by (2.6). Integrating the shear equation with respect to ξ̂ we
obtain

−
(

2ατ0

rc

)1/2

ū2Y =
τ

1/2
0

21/2rc
κ(η)± (η − µ cos ξ)1/2

(
−2ατ0N

2

r2
c∆

+
2α3τ0

∆
− 2Nαb

r2
c

G′ +
4∆

r3
c

GG′
)

+ 2µN

(
2ατ0

r5
c

)1/2

G′ cos ξ. (2.20)

From the boundary conditions (2.19) we deduce

ū2Y ∼ 2ατ1

r2
c

Y + λ̃± as Y → ±∞, (2.21)

with λ̃± = αu′1M(rc±)+(N/rc)w
′
1M(rc±) being constants in the upper and lower regions

of the critical layer. The difference λ̃+ − λ̃− is the vorticity jump across the critical
layer, and is crucial both in determining the phase shift and fixing the mean-flow
distortions (see § 4). The function κ(η) in (2.20) is as yet unknown but must satisfy

κ(η) ∼ ∓ 23/2α

rcτ
1/2
0

(2τ1 + τ0)η
1/2 as η →∞, (2.22)

from (2.13), (2.21).



Nonlinear instability of thread–annular flow 237

Using ‘O’ or ‘E’ to represent contributions that are odd or even about ξ = π, the
forcing terms at the m = 4 stage (which include the first effects of viscosity) may be
abbreviated to

F(1)
4 = ‘O’, F(2)

4 = U1Y Y +
N

rc
W1Y Y + ‘O’, (2.23a, b)

F(3)
4 = ‘E’, F(4)

4 = W1Y Y + ‘O’, (2.23c, d )

with the shear governed by

∓
(

2ατ0

rc

)1/2

(η − µ cos ξ)1/2 ∂ū4Y

∂ξ̂
=

∂

∂Y

(
U1Y Y +

N

rc
W1Y Y + ‘O’

)
− N2

r2
c

∂

∂ξ
(‘E’) + ‘O’

= ū1Y Y Y + ‘O’ = ‘O’,

since ū1Y Y Y is zero from (2.11). It follows that ū4Y is ‘E’, V4 is ‘O’ and P4 is ‘E’. As in

SB the equation for W4 can be integrated with respect to ξ̂, leading to

∓W4 =

(
2ατ0

rc

)1/2
∂

∂η

(
G′(η)

∫ ξ̂

0

(η − µ cos q)1/2 dq

)
+ C4(η) + ‘E’, (2.24)

with C4(η) an arbitrary function. Imposing the condition of periodicity on W4 fixes
the function G′(η) as

G′(η) =
D±

I(η)
, with I(η) =

∫ 2Nπ

0

(η − µ cos q)1/2 dq, D± = ±(2ατ0rc)
1/2πN

2

∆
.

(2.25)

It follows that

G(η) ∼ G0 ± (2ατ0rc)
1/2Nπ

∆

(
η1/2

π
+ J

)
as η →∞, (2.26)

with

G(µ) = G0, J =
(2µ)1/2

8π
C (1), (2.27)

where we have uniform vorticity G0 within the cat’s eye and C (1) ' −5.516 is the
same constant as in SB. Hence the finite part of the jump in G(η) across the critical
layer is determined as

[[G(η)]]+∞
−∞ = 2(2ατ0rc)

1/2Nπ

∆
J, (2.28)

and this result will be used in the phase shift calculation and the determination of
the mean-flow distortions.

The final stage we need to consider (as in SB and Walton 2002) is m = 5 where the
shear equation is

∓
(

2ατ0

rc

)1/2

(η − µ cos ξ)1/2 ∂ū5Y

∂ξ̂

= ū2Y Y Y − N

r2
c

V1W4Y +
αNτ0

r3
c

Y W4ξ − 2∆

r3
c

∂

∂ξ
(W1W4) + ‘O’. (2.29)

By substituting for ū2Y from (2.20), integrating with respect to ξ̂ and demanding
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periodicity, we can derive an equation governing the behaviour of the shear term
κ(η). This equation can itself be integrated and after some simplification we obtain

τ0rc

4∆
(κ(η)− κ0) = −τ0α

1/2N

r
1/2
c ∆

(ηG′(η)− G(η)− µG′(µ) + G0)

−D
±
2

D±
(G(η)− G0)− 2∆

α1/2r
3/2
c N

∫ η

µ

q(G′(q))3 dq, (2.30)

where

D±2 = ±(2τ0)
1/2 αNπ

∆
τ1 ± τ

3/2
0 αNπ

21/2∆

(
1− N2

∆

)
.

The finite part of the jump in κ(η) can then be calculated. We find

τ0rc

4∆
[[κ(η)]]+∞

−∞ =
απ

∆
(2τ0)

1/2

(
3τ0N

2

∆
− (2τ1 + τ0)

)
J +

ατ
3/2
0 N2

2∆2
µ1/2π

− (2τ0)
3/2αN2

2∆2
(C (2) − 2)µ1/2, (2.31)

where

C (2) =
8π3N3

µ1/2

∫ ∞
µ

(
s

I3
− 1

8π3N3s1/2

)
ds ' 0.1564

is a constant which also appears in the analysis of Walton (2002) for impulsively
started flow. This term should also be present in SB’s analysis of HPF but was
overlooked in their work. Using (2.20), (2.31) and the expression (2.27) for J , the
vorticity jump across the critical layer can be shown to be

λ̃+ − λ̃− = [[ū2Y ]]+∞
−∞ = − 1

2α1/2r
1/2
c

[[κ(η̃)]]+∞
−∞ − τ

1/2
0 α1/2N2µ1/2C (1)

r
3/2
c ∆

= −α
1/2τ

1/2
0 µ1/2

r
3/2
c

((
5N2

2∆
− 1

2
− τ1

τ0

)
C (1) +

N2

∆
π + 23/2N

2

∆
(2− C (2))

)
.

(2.32)

This expression will also prove useful in § 4 when we discuss the mean-flow distortions.
In the present context it leads us to an expression for the phase shift. If we write

[[ū5]]
+∞
−∞ =

∞∑
n=1

(βn sin nξ + γn cos nξ), (2.33)

then the phase shift is the coefficient β1(= φ say) given by

φ =
1

Nπ

∫ 2Nπ

0

[[ū5]]
+∞
−∞ sin ξ dξ =

1

Nπ

∫ ∞
−∞

(∫ 2Nπ

0

ū5Y sin ξ dξ

)
dY .

The details of the phase shift calculation are given in SB for the special case of HPF
and we simply quote the analogous result here, namely

µφ = −2(λ̃+ − λ̃−) +
4

r2
c

N2

∆
(2ατ0rc)

1/2πJ. (2.34)
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Substituting for λ̃+ − λ̃− from (2.32) and J from (2.27) we obtain

µφ =

(
ατ0µ

r3
c

)1/2
N2

∆

((
6− ∆

N2

(
1 +

2τ1

τ0

))
C (1) + 2π + 25/2(2− C (2))

)
. (2.35)

We can now relate φ to the scaled phase shift Φ by observing that if the asymptotic
form for ū2 contains a term of the form k1 lnY cos ξ, then in view of the replacement
(2.7) we have that φ = −k1Φ. From the asymptotic forms (2.6) we see that

k1 =
A0p̂

αr2
c τ0

(
−N2

(
1− 2τ1

τ0

)
+ α2r2

c

(
1 +

2τ1

τ0

))
,

and therefore

φ =
A0p̂

αr2
c τ0

(
N2

(
1− 2τ1

τ0

)
− α2r2

c

(
1 +

2τ1

τ0

))
Φ.

Finally, we can substitute this relation into (2.35) to determine the phase shift–
amplitude relation:

Φ =
rc(ατ0N)2

(A0p̂∆)3/2

(
6− ∆

N2

(
1 +

2τ1

τ0

))
C (1) + 2π + 25/2(2− C (2))

N2

(
1− 2τ1

τ0

)
− α2r2

c

(
1 +

2τ1

τ0

) . (2.36)

Confidence in the validity of (2.36) is provided by the fact that it reduces correctly to
equation (3.25) of SB for the case of HPF (when τ0 = 2r2

c , τ1 = −r2
c ) with allowance

made for the final term involving C (2) which was missed in their analysis. From an
examination of the various constants involved it can be seen that the phase shift
predicted by (2.36) is always negative. This phase shift should be exactly balanced by
that produced by the two wall layers and this will determine the amplitude A0 of the
neutral disturbance. In the next subsection we investigate the dynamics of the wall
layers and calculate the phase shift arising from them.

2.3. The viscous wall layers

Here we re-introduce the viscous terms neglected to leading order in the critical
layer. The dominant balance in both wall layers is between the terms α(U0 − c0) and
R−1∂2/∂r2, implying a classical O(R−1/2) thickness. We deal with the inner wall first,
where we write

r = δ + R−1/2rcZ,

where Z is the O(1) normal coordinate within the wall layer. The velocities and
pressure expand as

u = V + R−1/2U ′0(δ)rcZ + · · ·+ R−1/3ū(ξ, Z) + · · · ,

v = R−5/6v̄(ξ, Z) + · · · , w = R−1/3w̄(ξ, Z) + · · · , p = R−1/3p̄(ξ, Z) + · · · ,
where the scalings here are implied by the behaviour within the inviscid region as
r → δ. The normal momentum equation simplifies to ∂p̄/∂Z = 0 to leading order,
implying that the pressure is equal to its value on the thread throughout the layer,
i.e. we have

p̄ = A0P0 cos ξ + p2M(δ).
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The leading-order azimuthal momentum equation takes the form

α(V − c0)
∂w̄

∂ξ
=
NA0P0

δ
sin ξ +

1

r2
c

∂2w̄

∂Z2
,

and the solution of this equation that satisfies no slip on Z = 0 and remains finite as
Z →∞ is

w̄ = −Re

[
NA0P0

αδ(V − c0)
(1− exp(−mrcZ)) exp(iξ)

]
, m =

(
1 + i√

2

)
α1/2(V − c0)

1/2.

Now that the azimuthal velocity is known, the other velocity components can be
determined from the continuity and streamwise balances:

α
∂ū

∂ξ
+

1

rc

∂v̄

∂Z
+
N

δ

∂w̄

∂ξ
= 0,

α(V − c0)
∂ū

∂ξ
= αA0P0 sin ξ +

1

r2
c

∂2ū

∂Z2
.

The appropriate solutions satisfying the no-slip conditions are

ū = −Re

[
A0P0

(V − c0)
(1− exp(−mrcZ)) exp(iξ)

]
,

v̄ = −Re

[
iA0P0

(V − c0)αδ2
(N2 + α2δ2)

(
1

m
− rcZ − 1

m
exp(−mrcZ)

)
exp(iξ)

]
.

Taking the limit of the latter expression as Z →∞ we find

v ∼ −R−5/6 A0P0

(V − c0)αδ2
(N2 + α2δ2)rcZ sin ξ + R−5/6 2(N2 + α2δ2)A0P0

(2α(V − c0))
3/2 δ2

(sin ξ − cos ξ).

(2.37)

From comparison of (2.37) with (2.1) we see that the first of these terms matches to
the term G2 in the inviscid region while the second displacement term includes the
anticipated phase shift and provides the condition on v5:

v5 → 2(N2 + α2δ2)A0P0

(2α(V − c0))3/2δ2
(sin ξ − cos ξ) as r → δ,

where P0 = P2(δ).
A similar analysis can be carried out for the outer wall layer near r = 1, the only

difference being that U0 ≈ 0 here and so there is no dependence on V . We find that
the resulting displacement effect leads to the appropriate condition on v5 being

v5 → 2(N2 + α2)A0P1

(2αc0)3/2
(sin ξ + cos ξ) as r → 1 (2.38)

(precisely as in SB) where P1 = P2(1).

2.4. The determination of the nonlinear disturbance amplitude by the balancing of
phase shifts

The critical layer analysis of § 2.2 has revealed that the components (u5, v5, w5, p5)
contain terms of the form

A0(F5(r) sin ξ, G5(r) cos ξ,H5(r) sin ξ, P5(r) sin ξ)
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where

G5(δ) = −2(N2 + α2δ2)A0P0

(2α(V − c0))3/2δ2
, G5(1) =

2(N2 + α2)A0P1

(2αc0)3/2
, (2.39)

from the wall layer analysis of § 2.3. From substitution into the Navier–Stokes equa-
tions we find that P5 satisfies the same Rayleigh equation as P2, namely

(U0 − c0)

(
P ′′5 +

1

r
P ′5 −

(
N2

r2
+ α2

)
P5

)
= 2U ′0P

′
5,

but the boundary conditions are now

P ′5(δ) = − (N2 + α2δ2)P0

(2α(V − c0))1/2δ2
, P ′5(1) = − (N2 + α2)P1

(2αc0)1/2
, (2.40)

from (2.39), together with the jump condition

[P5]
+
− = −

(
N2 − α2r2

c − 2τ1

τ0

(N2 + α2r2
c )

)(
rc − r
rc

)3
p̂

3
Φ, (2.41)

deduced from the pressure behaviour in (2.6) and the jump (2.7). After some manip-
ulation we obtain

r

(U0 − c0)2
(P5P

′
2 − P2P

′
5) =

{
ω+, r > rc
ω−, r < rc,

(2.42)

where the constants ω± are given by

ω+ = (N2 + α2)(2α)−1/2c
−5/2
0 P 2

1 , ω− = (N2 + α2δ2)(2α)−1/2δ−1(V − c0)
−5/2P 2

0 .

Applying the jump condition (2.41) to this expression we find that Φ must be given
by

Φ = − τ2
0

p̂2(2α)1/2

(
(N2 + α2)P 2

1

c
5/2
0

− (N2 + α2δ2)P 2
0

(V − c0)5/2δ

)/(
N2 − α2r2

c − 2τ1

τ0

(N2 + α2r2
c )

)
,

(2.43)

and this represents the overall phase shift across the viscous wall layers. This phase
shift must be in tune with that found in (2.36) across the critical layer. Equating our
two expressions (2.36) and (2.43) for Φ we obtain the final result

A0 =
21/3r

2/3
c p̂1/3α5/3N4/3

N2 + α2r2
c

×
((

6− (N2 + α2r2
c )N

−2
(
1 + 2τ1/τ0

))
(−C (1))− 2π − 25/2(2− C (2))

(N2 + α2)c
−5/2
0 P 2

1 − (N2 + α2δ2)(V − c0)−5/2δ−1P 2
0

)2/3

,

(2.44)

where all the quantities on the right-hand side are either known analytically or can be
easily computed numerically. It is a straightforward matter to check that this result
for the amplitude reduces to the corrected form of SB’s equation (3.26) for the special
case of HPF.
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To determine the wave speed c0 and the pressure quantities p̂, P0 and P1 we need to
solve the Rayleigh equation (2.4) numerically. This is carried out in the next section
and leads to the determination of the amplitude of the neutral modes and their
dependence on the thread radius δ and injection velocity V .

3. The numerical solution of the Rayleigh equation
The numerical problem under study here is the solution of

(U0 − c0)

(
P ′′2 +

1

r
P ′2 −

(
N2

r2
+ α2

)
P2

)
= 2U ′0P

′
2 (δ 6 r 6 1), (3.1)

where U0(r) is given by (1.3) and depends on the parameters δ and V . The boundary
conditions are

P ′2(δ) = 0, P ′2(1) = 0.

In addition we need to apply the condition of zero phase shift at r = rc where
U0(rc) = c0. From the asymptotic expansion (2.6) of P2 as r → rc− we can derive the
jump in P ′2/P2. We find that[

P ′2
P2

]+

−
∼ 1

rc
(4j2|ε|+ 8Kh1|ε|3 ln |ε|+ 2(4j4 +Kh1 − 2j2

2 )|ε|3), (3.2)

neglecting terms of O(ε5 ln |ε|), where ε = (rc−r)/rc, and j2, j4, h1 and K are coefficients
in the series expansion of P2 and are given explicitly by

j2 = − 1
2
(N2 + α2r2

c ), j4 = j4 +
3

4

(
1 +

2τ1

τ0

)
j3,

K =
1

3

(
(N2 − α2r2

c )− 2τ1

τ0

(N2 + α2r2
c )

)
, h1 =

3

4

(
1 +

2τ1

τ0

)
,

j4 =
1

48

(
13N2 − 6N4 − α2r2

c − 12N2α2r2
c − 6α4r4

c

)
+

11α2r2
c

12

(
τ1

τ0

)
+ (N2 + α2r2

c )

(
17

12

(
τ1

τ0

)2

− τ2

τ1

)
,

with τ2 = −r3
cU
′′′
0 (rc)/6.

3.1. The numerical procedure

Our numerical approach is as follows. First, for given values of axial wavenumber
α, azimuthal wavenumber N, thread radius δ and injection velocity V we guess a
value for the critical layer location rc in the range δ < rc < 1. Then we proceed
to solve in δ < r < rc(1− ε) (with ε suitably small) by marching forward using a
Runge–Kutta scheme with initial values P2(δ) = 1, P ′2(δ) = 0. The value of the
unknown constant j3 can then be found using the ratio P ′2(rc(1 − ε))/P2(rc(1 − ε)).
Next we solve in rc(1 + ε) < r < 1 by marching inwards from r = 1 where we impose
P2(1) = 1, P ′2(1) = 0. The jump [P ′2/P2]

+− can then be calculated. This whole process is
repeated, iterating upon rc, until (3.2) is satisfied. Once the solution for rc is obtained,
the actual values of P2(δ) and P2(1) can be found, and the wave speed c0 follows
from U0(rc) = c0. The amplitude of the neutral mode can then be determined from
(2.44). The procedure is repeated for a range of values of α, N, δ and V . It can be
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Figure 5. Neutral mode results for N = 1, α = 0.01. (a) Wave amplitude A0 versus thread radius δ
for various injection velocities V . From right to left: V = 0.1, 0.2, 0.4, 0.6, 0.8, 0.9. (b) Critical layer
location rc versus δ for (from top to bottom) V = 0.1, 0.2, 0.4, 0.6, 0.8, 0.9.

demonstrated analytically that the Rayleigh problem posed above has no solution if
N = 0: we therefore concentrate on non-axisymmetric modes.

3.2. Numerical results

In figure 5(a, b) we plot the amplitude of the neutral wave A0 and the critical layer
location rc versus thread radius δ for various injection velocities V . These results
are for a disturbance with axial wavenumber α = 0.01 and azimuthal wavenumber
N = 1. We see that a neutral wave is supported over a range of thread sizes but
there is a critical radius (δ+

c , say) above which no instability exists. This critical radius
corresponds to the vanishing of the net phase shift (2.43) across the viscous wall
layers: beyond this radius the phase shift is positive and it is no longer possible
to balance it against that induced across the critical layer (2.36), which is always
negative. It is also evident that this critical radius is generally much less than that
which corresponds to the theoretical maximum injection velocity (1.4). We can see
from figure 5(a) that δ+

c decreases as V increases, while figure 5(b) shows that an
increase in injection velocity results in the movement of the critical layer away from
the tube wall and towards the thread.

Figure 6(a, b) displays the corresponding results when the axial wavenumber is
increased to α = 0.5. The general trends described above remain unchanged but the
typical amplitude is increased and the instability exists over a slightly smaller range
of thread radii. A new feature, evident for V = 0.1 (which is shown by a dotted line),
is the existence of a lower critical thread radius δ−c below which no neutral waves
are supported for this value of V . When δ < δ−c , the calculated wave speed c0 of the
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Figure 6. Neutral mode results for N = 1, α = 0.5. (a) Wave amplitude A0 versus thread radius
δ for various injection velocities V . From right to left: V = 0.1 (dotted), 0.2, 0.4, 0.6, 0.8, 0.9. (b)
Critical layer location rc versus δ for (from top to bottom) V = 0.1 (dotted), 0.2, 0.4, 0.6, 0.8, 0.9.

disturbance is greater than the injection velocity V . In such a situation (as remarked
near the start of § 2) our analysis breaks down since there is no longer a single critical
layer in the flow. When α is increased to unity (figure 7) the typical amplitude is
raised further, and the lower critical thread radius is evident for both thread velocities
V = 0.1 and 0.2. The critical layer is sited well away from the wall at this value of
axial wavenumber.

Figure 8 shows the results for the situation where the parameters are as in figure 5
except that the azimuthal wavenumber has been increased to N = 2. Qualitatively
the same dependence of amplitude and critical layer location upon δ is observed
with the same trends as V is increased. The typical amplitude, however, is much
smaller than in the N = 1 case and the range of δ over which an instability of this
form exists is reduced, particularly at larger injection velocities. In addition there is a
stronger variation of critical layer location with thread radius. These trends continue
as N is increased although the ever smaller amplitudes involved make the numerical
calculations difficult to perform accurately.

Another approach to the critical phenomena discussed above is to observe that for
a given thread radius δ there is a critical injection velocity Vc say, above which the
flow is stable to the nonlinear asymmetric disturbances studied here. In figure 9 we
plot Vc versus δ. It can be seen that Vc decreases as the axial wavenumber α increases,
although Vc is relatively insensitive to changes in α when δ is close to unity. The value
of Vc also decreases significantly when the azimuthal wavenumber N is increased
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Figure 7. Neutral mode results for N = 1, α = 1. (a) Wave amplitude A0 versus thread radius δ
for various injection velocities V . From right to left: V = 0.1 (dotted), 0.2 (dashed), 0.4, 0.6, 0.8, 0.9.
(b) Critical layer location rc versus δ for (from top to bottom) V = 0.1 (dotted), 0.2 (dashed),
0.4, 0.6, 0.8, 0.9.

from 1 to 2, and this trend continues as N is increased further, suggesting that if the
thread velocity is above critical for N = 1 the resulting basic flow will also be stable
to all higher azimuthal modes. At small values of δ it may be difficult in practice to
achieve such stability as figure 9 shows that in such cases the value of Vc is close to
or in excess of the maximum achievable thread velocity Vmax defined in (1.4). These
results therefore suggest that for the thread injection process it is desirable to use a
relatively thick thread operating at or above the appropriate value of Vc.

It is interesting to compare our results with the linear stability calculations of
Sadeghi & Higgins (1991) where a critical or ‘cut-off’ velocity, beyond which the flow
is linearly stable at all Reynolds numbers, was identified. The thread velocity used in
their paper VSH say, can be shown to be related to ours by

V = C(δ)VSH, C(δ) = δ2 +
1− δ2

2 ln δ

(
1− ln

(
δ2 − 1

2δ2 ln δ

))
.

A quick calculation then shows that the cut-off velocities reported in their paper
are substantially lower than those found in the nonlinear setting considered here.
For example, for the case δ = 0.5, N = 1, Sadeghi & Higgins find a cut-off velocity
VSH ' 0.6495, which corresponds to Vc ' 0.082 using our non-dimensionalization,
and is therefore considerably less than the nonlinear cut-off velocity shown in figure 9.
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Figure 8. Neutral mode results for N = 2, α = 0.01. (a) Wave amplitude A0 versus thread radius
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Figure 9. Nonlinear cut-off velocity Vc versus δ. The solid curves are for N = 1, with (from left to
right): α = 1, 0.5, 0.01. The dotted lines are for N = 2 with (from top to bottom): α = 0.01, 0.5, 1.
The dashed curve represents the theoretical maximum thread velocity Vmax = 1− δ2.
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This is physically sensible as one would expect a flow operating just above the linear
cut-off to still be unstable to finite-amplitude disturbances. Mathematically, as the
thread velocity increases, the net phase shift across the viscous wall layers becomes
too small to support a linear disturbance, but nonlinear instabilities can still persist.

The fact that nonlinear solutions exist for N > 1 is of some interest as the cor-
responding neutral wave structure for a single pipe only admits the N = 1 mode
(SB; Walton 2001). Nevertheless, given the typically tiny amplitudes predicted for
the higher modes and the associated small cut-off velocities, it would appear that
N = 1 is likely to dominate in practice and for this reason we will concentrate on the
behaviour of this mode in the remainder of the paper.

4. The mean-flow distortions
It can be seen from the expansions (2.1) in the inviscid region that a feature of

this instability structure is that the distortion to the mean flow is larger than the
fundamental disturbance. Hence when comparing with experiments (as we shall do in
§ 5) this mean flow distortion is of vital importance and we devote the current section
to its determination. From substitution of (2.1) into the Navier–Stokes equations the
streamwise mean-flow distortion satisfies

u′′1M +
1

r
u′1M = 1

2
A2

0

(
G5F

′
2 − G2F

′
5 − NH5F2

r
+
NH2F5

r

)
.

Substituting for the quantities on the right-hand side in terms of the pressure, this
equation may be rewritten in the form

u′′1M +
1

r
u′1M = 1

2
A2

0

(
∂

∂r
+

1

r

)(
P5P

′
2 − P ′5P2

α(U0 − c0)2

)
= 1

2
A2

0

(
∂

∂r
+

1

r

)(
ω±

αr

)
,

using the result (2.42) from § 2.4. Since ω± are constants, the right-hand side reduces
to zero and therefore the solution for u1M that vanishes on r = δ and r = 1 is simply

u1M(r) =

{
M1 ln(r/δ) (δ 6 r < rc)

M2 ln r (rc < r 6 1),
(4.1)

where M1 and M2 are constants to be determined from the jump conditions across
the critical layer.

Again, from substitution of (2.1) into the Navier–Stokes equations, the azimuthal
mean-flow distortion satisfies

w′′1M +
1

r
w′1M − 1

r2
w1M = 1

2
A2

0

(
αH5F2 − αF5H2 + G5H

′
2 − G2H

′
5 − H5G2

r
+
G5H2

r

)
= 1

2
A2

0

N

α2

(
∂

∂r
+

2

r

)((
P5P

′
2 − P ′5P2

r(U0 − c0)2

))
= 1

2
A2

0

N

α2

(
∂

∂r
+

2

r

)(
ω±

r2

)
= 0.

Therefore the solution for w1M that vanishes at r = δ and r = 1 is

w1M(r) =

{
M3(r − δ2/r) (δ 6 r < rc)

M4(r − 1/r) (rc < r 6 1).
(4.2)
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We have four unknown constants M1, . . . ,M4 and so to fix their values we require
four jump conditions across the critical layer. Three of these are easy to obtain from
our critical layer calculation. First, from the m = 1 solution (2.11), (2.12) we have that
αu1M + (N/rc)w1M is continuous, hence

[αu1M + (N/rc)w1M]+
− = 0. (4.3)

Then, from the solution (2.27), (2.28) we have

[w1M]+
− = [[G(η)]]+∞

−∞ = (ατ0rcµ)1/2NC
(1)

2∆
≡ J1, (4.4)

while from (2.19), (2.32) we have

[αu′1M + (N/rc)w
′
1M]+

− = [[ū2Y ]]+∞
−∞

= −α
1/2τ

1/2
0 µ1/2

r
3/2
c

((
5N2

2∆
− 1

2
− τ1

τ0

)
C (1) +

N2

∆
π + 23/2N

2

∆
(2− C (2))

)
≡ J2, say. (4.5)

To obtain a fourth jump condition further analysis of the critical layer is required,
and this is presented in the Appendix. We find that

[w′1M]+
− = − (A0p̂)

1/2N3

rc∆3/2

((
3− ∆

N2

τ1

τ0

)
C (1) + π + 23/2(2− C (2))

)
≡ J3, say. (4.6)

Thus, for given values of V , δ,N and α, the wave amplitude A0, pressure p̂ and critical
layer location rc can be calculated using the numerical method of § 3 and then the
quantities J1, J2, J3 can be determined. Applying the jump conditions derived above to
the solutions (4.1), (4.2) obtained for the mean-flow distortions we find the constants
M1, . . . ,M4 to take the form

M1 =
NJ3 ln rc − rcJ2 ln rc −NJ1/rc

α ln δ
, (4.7a)

M2 =
NJ3 ln(rc/δ)− rcJ2 ln(rc/δ)−NJ1/rc

α ln δ
, (4.7b)

M3 =

(
r2
c − 1

)
2(1− δ2)

J3 − (1 + r2
c )

2rc(1− δ2)
J1, M4 =

(r2
c − δ2)

2(1− δ2)
J3 − (r2

c + δ2)

2rc(1− δ2)
J1. (4.7c, d )

Figure 10(a–d ) shows the dependence of the quantities M1, . . . ,M4 on the thread
radius δ as the injection velocity is increased. The wavenumbers of the disturbance
in this figure are α = 0.01 and N = 1, but qualitatively similar behaviour is found for
other choices of α and N. It is clear that the magnitude of the mean-flow quantities
(and hence their effect on the basic flow) is generally increased by increasing the
injection velocity for a fixed thread radius. Of particular interest here is the quantity
M1 which contributes to the axial shear stress on the thread. In view of the observation
that M1 < 0 for all δ, the effect of the instability is apparently to reduce the force
acting on the thread. We investigate this in more detail in the next section.

5. The force on the thread and the friction factor
In the previous two sections we have shown how the basic thread–annular flow

is susceptible to a nonlinear instability at high Reynolds number and we have gone
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Figure 10. Neutral mode results for N = 1, α = 0.01. The variation of the mean-flow distortion
coefficients M1,M2,M3,M4 with thread radius δ for various injection velocities V . In each plot the
values of V are (from right to left) 0.1, 0.2, 0.4, 0.6.

into some detail in explaining how the amplitude of that disturbance is affected by
the size and velocity of the thread. We would like to see whether this instability
actually occurs in an experiment and, if so, how it affects quantities that can easily be
measured experimentally. In their recent paper, FLW described a thread–annular flow
experiment that they performed under controlled conditions. Two of the quantities
that they measured were the force on the thread and a quantity known as the ‘friction
factor’ which relates the applied pressure gradient to the flux of fluid through the
annular tube. For both quantities they reported a sizeable discrepancy between the
experimental measurements and theoretical predictions based on the undisturbed
mean-flow profile (1.3). In this section we see what effect the mean flow distortion
derived in § 4 has on these results and whether it could be responsible for this
discrepancy.

It should be noted that in their experiments FLW use a Reynolds number Re which
is related to our pressure gradient-based Reynolds number R by

Re =
2RQ

π(1 + δ)
, (5.1)

where Q is the dimensionless flux of fluid through the annulus (related to the flux

Q̂ in FLW by Q̂ = RQ) and is given specifically in (5.6) below. The experiments
were performed at constant Re rather than constant R. In order to compare with the
experimental results for both the resistive force and the friction factor we therefore
first compute Q from (5.6) for given R and then calculate the corresponding Re from
(5.1). Alternatively, (5.1) and (5.6) together define R implicitly in terms of Re, so that
for given values of Re, δ and V , the corresponding R can be calculated numerically.
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5.1. The resistive force on the thread

Working first in dimensional quantities, the axial shear force on a thread of length l∗ is

F∗τ = 2πδ∗l∗µ∗
(
∂u∗

∂r∗

)
r∗=δ∗

.

In terms of the non-dimensional quantities introduced in §1, this becomes

F∗τ = (ρ∗ν∗2)2πδlR
(
∂u

∂r

)
r=δ

,

where l∗ = a∗l. Following the notation of FLW we introduce the non-dimensional
shear force

F̂τ =
F∗τ
ρ∗ν∗2

= 2πδlR

(
∂u

∂r

)
r=δ

.

There is also a pressure force acting on the thread which arises from the constant
axial pressure gradient applied to the fluid. This force can be written

F∗P = πδ∗2l∗
(
∂p∗

∂x∗

)
= (ρ∗ν∗2)πδ24lR,

and in non-dimensional form as

F̂P =
F∗P
ρ∗ν∗2

= πδ24lR.

The total resistive force on the thread is therefore

F̂R = F̂τ + F̂P = 2πδlR

(
∂u

∂r

)
r=δ

+ πδ24lR. (5.2)

FLW introduce a non-dimensional pressure gradient P̂ = −(a∗3/ρ∗ν∗2)(∂p∗/∂x∗),
which in our notation is equal to 4R. In their experiments they measure the quantity

F̂R/(P̂ l) which, from (5.2), can be written

F̂R

P̂ l
= 1

2
πδ

(
∂u

∂r

)
r=δ

+ πδ2. (5.3)

To calculate ∂u/∂r we take u equal to U0(r) + R−1/6u1M(r), with U0 the basic thread–
annular flow given in (1.3) and u1M the mean-flow distortion calculated in (4.1).
Substituting for U0 and u1M we obtain

F̂R

P̂ l
=
π

2

(
1− δ2

|ln δ| −
V

|ln δ| + R−1/6M1

)
, (5.4)

where the constant M1 is given in (4.7). The expression (5.4) is analogous to equation
(20) of FLW with the inclusion of the mean-flow distortion arising from the instabil-

ity. Note that the thread injection velocity V is equal to 4ŵTH/P̂ in FLW’s notation.
In theory it is possible for the total thread force to be zero. In the absence of an
instability this occurs when the thread velocity is given by

Vmax = 1− δ2,

as this makes the right-hand side of (5.4) zero. This is said to be the maximum
theoretically achievable thread velocity for thread injection.
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Figure 11. Normalized axial thread force versus thread radius δ. (a) N = 1, V = 0.08, Re = 100.
Results incorporating mean-flow distortion due to instability with α = 0.01 (dotted), 0.1 (dashed),
0.5 (dot-dashed). (b) N = 1, V = 0.2, Re = 100 with α = 0.01 (dotted), 0.1 (dashed), 0.5 (dot-dashed).
On both plots the solid curve is the undisturbed theoretical result and the triangles are the
experimental measurements of FLW.

In figure 11(a, b) we plot the resistive force calculated from (5.4) as a function of
thread radius δ for two different injection velocities V = 0.08 and V = 0.2, corre-
sponding to those used in the experiments of FLW, with Re = 100. This figure should
be compared with figure 5 in FLW. On figure 11 we also include the undisturbed
results (i.e. those obtained by setting M1 = 0) and FLW’s experimental results. A
feature of the results (anticipated at the end of the previous section) is that the thread
force for given δ and V is reduced by the presence of the instability. It can be seen
that the results are relatively insensitive to changes in the axial wavenumber α. Only
the N = 1 instability mode is presented here for reasons given towards the end of §3.
The predicted thread forces agree quite well with the limited data available from the
experiments of FLW who noted the discrepancy with the undisturbed flow theory in
their paper. This discrepancy increases with increasing thread velocity and this obser-
vation is consistent with our theory. We should mention here that FLW also carried
out experiments at zero thread velocity for which our theory is not valid and they
also measured the force at thread radii in excess of δ+

c , which again is not covered by
the present theory. Nevertheless the broad agreement between theory and experiment
is encouraging and offers a possible reason for the theoretical–experimental discrep-
ancy reported by FLW. It should be noted that although the flux-based Reynolds
number Re is only 100 for these experiments, the corresponding values of R (deduced
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Figure 12. Neutral mode results for N = 1, α = 0.01. The flux distortion coefficient M5 versus δ
for (from top to bottom): V = 0.1 (dotted), 0.2, 0.4, 0.6.

from (5.1), (5.6)) were as large as 50 000 in some cases, emphasizing the validity of a
high-Reynolds-number approach.

5.2. The friction factor

In their paper FLW also measure a dimensionless quantity known as the friction
factor λ which is essentially the ratio of the pressure gradient along the tube to the
square of the mean flow through it. More precisely, λ is given by

λ = −16π2

RQ2
(1− δ)(1− δ2)2, (5.5)

where Q is the dimensionless flux of fluid through the tube. The expression (5.5) is
equivalent to equation (24) in FLW. Taking the flow to be the basic thread–annular
solution plus the leading-order axial mean-flow distortion induced by the disturbance,
as in § 5.1, we have

Q = 2π

∫ 1

δ

(U0(r) + R−1/6u1M(r)) r dr

=
π

2

(
1− δ4 +

(1− δ2)2

ln δ
−
(

2δ2 +
(1− δ2)

ln δ

)
V + R−1/6M5

)
, (5.6)

where

M5 = 4

∫ 1

δ

u1M(r) r dr = M1

(
2r2
c ln(rc/δ

)
+ δ2 − r2

c ) +M2(r
2
c − 1− 2r2

c ln rc).

Here we have substituted for u1M from (4.1), while M1,M2 are given in (4.7). Thus λ
can be calculated from (5.5) with Q given in (5.6). The flux distortion M5 is plotted
versus δ in figure 12 for various values of V , with α = 0.01 and N = 1. We see that
since this quantity appears to always be negative, it has the effect of reducing the
overall flux compared to the undisturbed case, with the effect becoming stronger as
the injection velocity is increased.

We compare with FLW’s experimental results in figure 13 where we plot log10 |λ|
versus log10 Re, where Re is the flux-based Reynolds number used by FLW and is
defined above in (5.1). This plot should be compared with FLW’s figure 7. We present
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Figure 13. Log–log plots of friction factor λ versus flux Reynolds number Re. In each plot
results incorporating the mean-flow distortion are shown with α = 0.01 (dotted), 0.1 (dashed),
0.5 (dot-dashed). The solid lines are the undisturbed theoretical results and the triangles represent
the experimental data of FLW. (a) V = 0.1; (b) V = 0.178 (corresponding to an experiment of
FLW); (c) V = 0.3. All the results are for a thread radius δ = 0.51.

plots for thread radius δ = 0.51 and at three different thread velocities with the second
of these (V = 0.178) corresponding to one of FLW’s experiments. The corresponding
undisturbed friction factor (which is proportional to 1/Re) is also plotted in these
figures. Once again the azimuthal wavenumber of the disturbance is taken to be N = 1
and we show curves for different values of α (0.01, 0.1, 0.5). We can see that in all cases
the effect of the instability is to increase the friction factor, essentially by reducing
the mass flux Q due to the negative contribution from the term M5. In contrast FLW
measured λ to be slightly less than the undisturbed value and observed an increased
flux. They attributed this to radial movement of the thread which in reality is elastic
and whose shape will be affected by any non-axial velocity components present in
the flow. Our model assumes the thread to be rigid and clearly the incorporation of
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thread flexibility would be a useful extension which will be considered in future work
on this subject. In addition the upper limit on R for the friction factor experiment
turns out to only be about 1000, and we would therefore not necessarily expect our
asymptotic theory to perform well in this case.

6. Discussion and future work
In this paper we have modelled the surgical procedure of thread injection by

considering the incompressible axial flow between concentric cylinders where the inner
cylinder, representing the thread, moves in the axial direction at a constant speed.
For this flow we have derived the corresponding exact solution of the Navier–Stokes
equations. This model has been used by previous workers in the field, notably Koch &
Feind (1958); Shigechi & Lee (1991) and FLW. Motivated by the discrepancy between
the undisturbed theory and experiment reported in the last of these references we
considered the nonlinear stability of this flow at high Reynolds number. The instability
structure is such that a single non-axisymmetric mode dominates across most of the
annulus, but within the critical layer (where the disturbance phase speed equals the
basic flow velocity) the flow is fully three-dimensional. The critical layer is of the
equilibrium, inviscid, nonlinear type previously studied by Benney & Bergeron (1969),
Haberman (1972) and SB and produces a small amplitude-dependent phase shift. By
balancing this against the net phase shift across the viscous wall layers the amplitude
of the neutral modes can be calculated analytically as a function of the axial (α) and
azimuthal (N) wavenumbers, the thread radius δ and the injection velocity V . In § 3
we presented results for certain values of these parameters and showed that neutral
modes exist over a wide range of thread radii and injection velocities. It is found that
although there are no axisymmetric instabilities, solutions for N > 1 exist, in contrast
to the single pipe case where N = 1 is the only instability mode possible. For a given
thread radius the amplitude of the neutral mode increases as V increases, but if the
injection velocity is sufficiently large the aforementioned balance of phase shifts does
not prove possible and the instability ceases to exist in its present form. This ‘cut-off’
velocity is analogous to that found in linear theory, but is considerably larger in
magnitude. Conversely, for a given injection velocity there is an upper thread radius
beyond which this instability does not operate, and for small thread velocities there
is also a lower limit on the radius.

In terms of the medical application the results of our analysis suggest that it is
desirable to use a relatively thick thread operated at as high an injection velocity as
possible in order to minimize the lateral movements of the thread during the injection
process. This is in contrast to linear theory which predicts that very thin threads
are the most stable, irrespective of the injection velocity. Above the nonlinear cut-off
velocity Vc the stability properties of the flow are open to conjecture. By analogy
with the linear cut-off analysis for Poiseuille–Couette flow (Cowley & Smith 1985) we
would expect that rather than the flow being completely stable above Vc, there is a
bifurcation to a larger-amplitude unstable state.

The nonlinear disturbance considered in this paper induces a relatively large mean-
flow distortion and this is derived explicitly in § 4 and used in § 5 to predict the
axial thread force. It is found that the effect of the instability is to reduce the thread
force significantly and our results are in line with the experiments performed by
FLW. We also derive the disturbed friction factor – this is found to be larger than
the undisturbed case due to a reduction in the flux. This was not observed by FLW,
whose experiments agreed well with undisturbed-flow theory for non-zero thread
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velocities. There are a number of possible reasons for this disagreement and among
the most likely are that the Reynolds number in the friction factor experiments
was not sufficiently large for our asymptotic theory to be valid, and that the thread
assumed an eccentric position within the tube. The experiments reported in FLW
were carried out for only a few choices of δ and V , and it would be desirable to
compare with experiment over a larger region of parameter space.

The theory presented here could be extended in many ways. More analysis of the
disturbance behaviour close to the cut-off in δ or V would be of interest, as would
analysis of the V = 0 case where two critical layers are present. This latter problem
is of considerable interest as the experiments of FLW showed there to be a marked
difference in the flow behaviour when the thread is kept fixed. In addition there are
a number of refinements that would make the model more realistic. For example
the flexibility and eccentricity of the thread (treated here as a concentric rigid body)
should be taken into account, while the basic flow could be regarded as still evolving
temporally (as in Walton 2002) after the application of the pressure gradient, or
spatial evolution could be considered (particularly relevant near the leading edge of
the thread).

Nevertheless, we believe that by demonstrating that nonlinear neutral waves can be
supported by the basic thread–annular flow we have made a first step towards under-
standing the stability properties of the thread injection process and have gone some
way towards explaining the reported discrepancy between theory and experiment.

The comments of the referees are gratefully acknowledged.

Appendix. Calculation of the jump in w′1M across the critical layer
To calculate this quantity we need to consider the velocity components at the m = 5

level, for which the forcing terms of relevance here are

F(1)
5 =

NY

r2
c

W4ξ + ‘O’, (A 1a)

F(4)
5 = W2Y Y +

W1Y

rc
− α(U2W4ξ +U4W2ξ)− V2W4Y +

V1W4

rc

−N
rc

∂

∂ξ
(W2W4)− NY

r2
c

∂

∂ξ
(W1W4) + ‘O’. (A 1b)

The azimuthal momentum equation (2.17) has the form

∓
(

2ατ0

rc

)1/2

(η − µ cos ξ)1/2 ∂W5

∂ξ̂
=F(4)

5 − N

rc
P5ξ − V5W1Y − ū5W1ξ.

Integrating this equation across the critical layer and using the periodicity of W5 we
have ∫ 2π

0

∫ +∞

−∞

(
F(4)

5 − N

rc
P5ξ − V5W1Y − ū5W1ξ

)
dY dξ = 0.

The term involving P5 integrates to zero upon applying the condition of periodicity.
Then, integrating by parts with respect to ξ and using continuity, this equation
simplifies to ∫ 2π

0

∫ +∞

−∞
(F(4)

5 +F(1)
5 W1) dY dξ −

∫ 2π

0

[V5W1]
+∞
−∞ dξ = 0.
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Using (A 1) for F(1)
5 and F(4)

5 and recognizing that there is no contribution from the
‘O’ parts, the first integral can be written as

I1 =

∫ 2π

0

∫ +∞

−∞

(
W2Y Y +

W1Y

rc
− α(U2W4ξ +U4W2ξ)

−V2W4Y +
V1W4

rc
+
NYW4ξW1

r2
c

)
dY dξ.

Consider the contribution

I11 =

∫ 2π

0

∫ +∞

−∞
−α(U2W4ξ +U4W2ξ)− V2W4Y +

V1W4

rc
+
NYW4ξW1

r2
c

dY dξ.

We know from the critical layer calculations that ū4 = αU4 + (N/rc)W4 is even: this
means that we can replace αU4 by −(N/rc)W4 in the above expression. Thus,

I11 =

∫ 2π

0

∫ +∞

−∞

(
−αU2W4ξ +

N

rc
W4W2ξ − V2W4Y +

V1W4

rc
+
NYW4ξW1

r2
c

)
dY dξ

=

∫ 2π

0

∫ +∞

−∞

(
− αU2W4ξ +W4(F(1)

2 − V2Y − αU2ξ)

−V2W4Y +
V1W4

rc
+
NYW4ξW1

r2
c

)
dY dξ,

using the continuity equation (2.15) with m = 2. Substituting for F(1)
2 from (2.18) we

obtain

I11 =

∫ 2π

0

∫ +∞

−∞

(
−α ∂

∂ξ
(U2W4) +

NY

r2
c

∂

∂ξ
(W4W1)− ∂

∂Y
(V2W4)

)
dY dξ

= −
∫ 2π

0

[V2W4]
+∞
−∞ dξ,

where the first two terms have integrated to zero due to periodicity. The remaining
contribution to I1 is

I12 =

∫ 2π

0

∫ +∞

−∞

(
W2Y Y +

W1Y

rc

)
dY dξ

= 2π

(
[w′1M(rc)]

+
− +

1

rc
[w1M(rc)]

+
−

)
,

from (2.10) and (2.19). So we have that

2π

(
[w′1M(rc)]

+
− +

1

rc
[w1M(rc)

+
−]

)
−
∫ 2π

0

[V2W4]
+∞
−∞ dξ −

∫ 2π

0

[V5W1]
+∞
−∞ dξ = 0. (A 2)

Note that since V2 is odd, the component W4 must also have an odd part to give a
contribution. However it can be seen from an inspection of (2.24) that the ‘O’ part of
W4 → 0 as Y → ±∞ and therefore the term V2W4 will give no contribution.

We now need to consider the term involving V5. Since W1 is even we need
information about the even part of V5. From (2.33) we see that the jump in the
odd part of ū5 is φ sin ξ and hence by continuity the jump in the even part of V5 is
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−φY cos ξ. Using the asymptotic form (2.10) for W1 we conclude that∫ 2π

0

[V5W1]
+∞
−∞ dξ = −φA0Np̂

ατ0

∫ 2π

0

cos2 ξ dξ = −πφA0Np̂

ατ0

.

We also have that

[w1M(rc)]
+
− = [[G]]+∞

−∞ = 2(2ατ0rc)
1/2Nπ

∆
J,

from (2.28). Putting this information together, (A 2) reduces to

2π[w′1M(rc)]
+
− + 4

(
2ατ0

rc

)1/2
Nπ2

∆
J + πφ

A0Np̂

ατ0

= 0.

Substituting for φ from (2.35), µ from (2.12) and J from (2.27), we finally obtain the
result

[w′1M(rc)]
+
− = − (A0p̂)

1/2N3

rc∆3/2

((
3− ∆

N2

τ1

τ0

)
C (1) + π + 23/2(2− C (2))

)
.

This is the expression (referred to as J3) used to help determine the arbitrary constants
in the mean-flow distortions of § 4.
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Frei, Ch., Lüscher, P. & Wintermantel, E. 2000 Thread–annular flow in vertical pipes. J. Fluid
Mech. 410, 185–210 (referred to herein as FLW).

Haberman, R. 1972 Critical layers in parallel flows. Stud. Appl. Maths 51, 139–161.

Huang, A. & Joseph, D. D. 1995 Stability of eccentric core-annular flow. J. Fluid Mech. 282,
233–245.

Koch, R. & Feind, K. 1958 Druckverlust und Wärmeübergang in Ringspalten. Chemie Ing. Techn.
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